Static Allocation of Multirail Networks*

Salvador Call, Eitan Frachtenberg, Fabrizio Petrini,
Adolfy Hoisie and Leonid Gurvits

CCS-3 Modeling, Algorithms, & Informatics Group
Computer & Computational Sciences Division
Los Alamos National Laboratory
{scol | ,eitanf, fabrizio, hoi sie,gurvits}@ anl . gov

Technical Report

Abstract

Using multiple independent networks (also known as rails) is an emerging tech-
nique to overcome bandwidth limitations and enhance fault-tolerance of current
high-performance clusters. This report presents the limitations and performance
of static rail-allocation approaches, where each rail is pre-assigned a direction for
communication. An analytical lower bound on the number of networks required
for rail allocation is shown. We present an extensive experimental comparison of
the behavior of various allocation schemes in terms of bandwidth and latency, com-
pared to static rail allocation. We also compare the ability of static and dynamic
rail-allocation mechanism to stripe messages over multiple rails. Scalability issues
of static and dynamic rail allocation are also compared. We find that not only static
rail allocation necessarily consumes many resources, it also performs poorly com-
pared to dynamic rail allocation schemes, in all the tested aspects.

1 Introduction

System interconnection networks have become a critical component of the computing
technology with a direct impact on the design, architecture, and use of high-performance
parallel computers. Indeed, not only the sheer computational speed distinguishes high-
performance computers from desktop systems, but the efficient integration of the com-
puting nodes into tightly coupled multiprocessor systems. Network adapters, switches,
device driver software and communication libraries are increasingly becoming perfor-
mance critical components in modern supercomputers.

One approach to build large scale supercomputers, with as many as thousands of
processors, is to use shared memory multiprocessors (SMPs) as building blocks. In such

*The work was supported by the U.S. Department of Energy through Los Alamos National Laboratory
contract W-7405-ENG-36

machines it is very important to keep the ratio between computing power and commu-
nication capability properly balanced.

A natural solution to the problems of limited bandwidth availability in network con-
nections and of fault tolerance is the use multiple parallel networks, or "rails". To the best
of our knowledge, very little attention has been given so far in the literature in studying
communication protocols, performance characteristics, fault-tolerance, implementation
of system software and communication libraries for multiple rails.

Besides from being a challenging scientific endeavor, the analysis of multi-railed
networks has direct practical implications too. Los Alamos National Laboratory and
Compagq are currently developing an extreme-scale, multi-railed cluster of SMPs, the
30Tops ASCI Q machine'The Q-machine is based on the Quadrics network (QsNet)?,
which consists of two building blocks, a 64bit/66MHz PCI card with a programmable
network interface called Elan [7] and a low-latency high-bandwidth communication
switch called Elite [8]. Elites can be interconnected in a fat-tree topology [3]. A re-
cent performance evaluation of the QsNet, shows that the network performance is seri-
ously limited by the PCI bus [5]. In fact, the network can deliver almost 340 MB/sec at
user-level (400MB/sec of raw bandwidth), but the PCI implementation can sustain only
300 MB/sec, using the most efficient PCI chipset on the market. A further performance
degradation in the presence of bidirectional traffic, limits the aggregate communica-
tion bandwidth to 80% of the unidirectional bandwidth on most PCI chipsets (Intel 840,
Serverworks He and LE, Compaqg Wildfire). Though the next generation of the PCI inter-
face, called PCI-X, will double the nominal performance, the new generation of QsNet
will also double its performance, so this design issue won’t disappear. One important
constraint that impacts all communication strategies proposed is that bidirectional traffic
cannot be efficiently supported by the 1/O interfaces.

This technical report complements our study in [1] of dynamic rail allocation schemes.
In this report we present the basic properties of a multi-railed network, and analyze the
static rail allocation approach to communication over multiple rails. This approach allo-
cates each network interface to unidirectional traffic. That is, each network interface can
either send or receive messages, and its allocation is determined at boot/initialization
time. Static allocation poses the problem of reachability between nodes: we want to
have a direct path in the network between any possible pair of nodes. The use of in-
termediate nodes could seriously degrade the latency achieved by zero-copy, user-level
communication protocols, a key feature of most high-performance networks.

We compare the “optimal” static approach (see next section) with the basic, local-
dynamic and dynamic approaches in [1]. In a nutshell, the basic approach uses rails in
round-robin fashion, using one rail for every send while disregarding if it is busy; the
dynamic approach reserves rails on both sides before sending a message, and can stripe
messages over several rails.

The experimental results, obtained using a circuit-level simulator of the network and
network interface, explore the performance of the static rail allocation and compare it
the the performance of the dynamic methods under several traffic loads and message
sizes. These results shed new light into the benefit of using multiple network rails and
expose several trade-offs in the design of the allocation algorithms.

Lhttp://mww5.compag.com/alphaserver/news/supercomputer_0822.html
2http://www.quadrics.com

The rest of this report is organized as follows. Section 2 proposes two static alloca-
tion algorithms and presents a formal analysis on the rail requirement limits. One of the
proposed algorithms is optimal in terms of the required number of rails. The details of
the experimental evaluation carried out and the results are described in Section3. Finally,
we conclude in Section 4

2 Static Allocation

In this section the static allocation of network interfaces, in which each rail is exclusively
a transmitter or receiver, is analyzed. We obtain theoretically the best allocation pattern
and the appropriate algorithm to generate it. We will use the terms network interface
and rail interchangeably throughout this paper .

2.1 Theoretical bound

The answer we are seeking in this section is: what is the maximum number of processing
nodes that we can use for a given number of rails, under the following constraints:

e Each node can only transmit or receive on a given rail but not both. This ensures
unidirectional access to the 1/0 bus.

e Full connectivity among the nodes, i.e. each node can transmit to every other node
without passing through intermediate nodes.

o Rails are independent: messages cannot pass from one rail to another.

We can describe a static allocation using a binary matrix where columns represent nodes
and rows represent rails, so that a value of *1” in the A4;; entry means that node j transmits
on rail i. Figure 1 depicts static allocations examples and their equivalent allocation
matrices. In the example shown in Figure 1(a), rail 0 can be used for sending by node 0
and receiving by node 1. Since the allocation is static, one more rail is required to allow
communication from node 1 to node 0. As can be seen two rails are sufficient to ensure
full connectivity between two nodes. When considering four nodes, at least four rails
are required to ensure full connectivity. Figure 1(b) shows one possible allocation.

One simple bound of n < 23, where n is the number of nodes and r is the number
of rails can be obtained with the static allocation described in Algorithm 1. While this
allocation is simple, and clearly satisfies the constraints, it is not optimal. The optimality
is described by the following theorem:

Theorem 1. Given r network rails the number of nodes n that can be statically
allocated to these railswith unidirectional communication in the network interface card
(NIC) and full node connectivity cannot exceed

< () ®

Proof. Each node can use any given rail for either transmitting or receiving, but not
both (unidirectional requirement). Let a binary vector represent the static allocation of
nodes on a rail: the vector’s ith entry is 0 if the ith node receives on this rail and 1 if it

C o | [s | (w0 | [] [
TDED I% I8 SI5 &I

(a) Two rail alocation for two nodes (b) Four rail allocation for four nodes

(0 1)

Figure 1: Simple static allocation examples for 2 and 4 nodes. Rectangles denote net-
works (rails); circles represent nodes and arrows denote the allocation of each rail to
each node as either transmitting or receiving.

O = O
_o O =
O = = O
= O = O

Algorithm 1 : Static rail allocation with 2 log, n rails.
procedure log_rail_alloc

begi n
for i =0to loggn—1 do
begin)
al l ocate nodes on rail in consecutive groups of 2%, alternating
between transmitters and receivers, starting with transmtters.
end
for i =0to logzn—1 do
begi n)
al | ocate nodes on rail in consecutive groups of 2° alternating
between transmitters and receivers, starting with receivers.
end
end

transmits on it. We can represent the static allocation of the entire system as a binary
matrix A with r rows, each representing one rail, and n columns, each representing one
node. Let A;; denote the value at row i and column j of A, that is, the role allocated
to the jth node on the ith rail. The problem can thus be formalized as determining the
maximum number of columns n of a binary matrix with r rows for which the following
property holds:

Ve,ye{l.n},x#y: Ipe{l.r} st. App =0, A4, =1)

For each matrix column j let S; be the set of indexes i for which A;; = 1:
S; = {1 <1i <r|A;; =1}. Note that the property (2) of a matrix A is equivalent to the
following property:

Ve,ye{l.n},z#y: Su €S,y ©))

The equivalence stems from the fact that if (3) doesn’t hold, i.e.
dz,ye {l.n},z#y st S, CSy

then for every row p € {1..r} for which 4,, = 1 we havealso A,, = 1 so0 (2) cannot
hold. In the other direction, if (3) holds then for every two columns z,y € {1..n}, x #y
there would have to be at least one row p € {1..r} for which 4,, =0, A4,, = 1, orelse
either S, C Sy or S, C S,. The maximum number of columns n for a matrix A with
the property (3) is given by Sperner’s lemma to be (1). A short proof of this lemma can
befoundin[4]. O

2.2 Allocation algorithm

We propose an algorithm to allocate r rails to n nodes for any given r and n that satisfies
(2). This algorithm is simple to implement and is optimal in the sense that it can allocate
rails for all the nodes even when the bound is tight. The procedure is to define n binary
vectors (each representing the rail transmit/receive allocation for a single node), each
having exactly [g] 1’s in them. The number of distinct vectors with this property is

(i)

so there is a sufficient number of vectors to allocate for n nodes. Also note that any two
different vectors containing the same number of 1’s satisfy condition (3), so by inference
these vectors satisfy the requirement (2). Any enumeration that produces the different
vectors can provide this vectors. For example, strings can be enumerated by lexico-
graphic order (for r=4 we could have 0011, 0101, 0110, 1001, 1010, 1100). Another
simple procedure to define these vectors is described in Algorithm 2.

2.3 Examples

Figure 2 shows the relationship between the number of nodes and the number of rails
required to support them according to our requirements, using the two allocation algo-
rithms described. An example allocation using Algorithm1 is depicted in Figure 3. We
note that a maximum of 8 nodes can be allocated using 6 rails. Figure 4 is an example
of an optimal allocation matrix created by Algorithm 2 for 20 nodes on 6 rails (20 nodes
is the maximum for 6 rails).

Algorithm 2 : Optimal static rail allocation.

{ build_rail _vectors is a recursive procedure that

vectors of length r are output (n is the nunber of nodes and r is
the number of rails), each representing an allocation of a single
node. The procedure tries to allocate a 1 and then 0 for each vector
| ocation, and backtracks whenever a vector is conpleted. It should
be first called fromoutside with the follow ng paraneters:
build_rail _vectors (enpty_vector, r, int(r/2))

runs until n binary

}

Procedure build_rail_vectors

I nput: vector being built (current_vector),
rails left to allocate (rails_left),

ones left for this vector (ones_left)
begi n
if n vectors were output then return { Ending condition net -
all ocated for all nodes }

if rails_left <= 0then { No. nore rails to allocate neans that - }
out put current_vector

{ the current vector (node) is conpleted. }
el se
begi n { Still have rails to allocate }
if ones_left > 0 then

{ Try to allocate a 1 if any left }
buil d_rail _vectors (current_vector appended with 1,

rails_left - 1,
ones_left - 1)
if (rails_left - ones_left) > 0 then

{ Try to allocate a 0 -
if any left }

build_rail _vectors (current_vector appended with O,

rails_left - 1,
ones_| eft)

end
end
25 N T) T T T
optimal allocation E—
2 log?2 allocation --------- |

20 - i""""j |
i)
®

4 16 64 256 1024 4096
nodes

Figure 2: Required rails as a function of the number of nodes for both static allocation
algorithms

OO O = =
OO = = O
O R OO
ORr = EF~,HOO
= O O O = =
— O KR OO
= -0 O o =
-0 OO

Figure 3: Example allocation for 6 rails and 8 nodes using Algorithm 1.

111111111 100O0O0O0OO0O0O0OO0O0
1111000O0O0O0O111111000O00O0
1 0001110001110001110
01001001101 0O011011°01
0o0o01ro00101010101011011
0001001011001 0110111

Figure 4: Optimal allocation matrix for 6 rails and 20 nodes created using Algorithm 2.

3 Experimental Framework and Results
3.1 Simulation Model

In the experimental evaluation we focus our attention on a family of fat-tree interconnec-
tion networks, 32 SMP nodes, each with four processors. Using the optimal allocation
described in 2.2, it can be seen that a minimum of seven rails is required to statically
allocate 32 nodes with the optimal allocation. The simulation model tries to capture the
most important characteristics of the QsNet at the granularity of the clock cycle. The
simulator models wormhole flow-control, with two virtual channels on each physical
channel. The input buffers on each virtual channel can contain up to 128 flits [2], each
consisting of two bytes. A flit can be transmitted over a physical channel in a single
clock cycle, while a packet can be routed through an Elite switch in six clock cycles.

The simulator also models a thread processor in the NIC, which can process in-
coming control and data packets and can send a reply in few hundreds of clock cycles.
Another important characteristic is the unidirectionality of the 1/0 bus, which can trans-
mit data in one direction. We also assume that the bus bandwidth is equalized with the
external network bandwidth (an optimistic set of assumptions, given the current state of
the art).

This model is evaluated in the SMART (Simulator of Multiprocessor ARchitectures
and Topologies) environment [6]. Implemented in C++, SMART is an object-oriented
discrete-event simulation tool for evaluating parallel architectures and high performance
interconnection networks.

3.2 Communication Patterns

In our model each process generates packets independently, using three random vari-
ables: (1) The message size, which is exponentially distributed with a given mean value.
The average message size we used is 32KB; (2) the inter-arrival time is also exponen-
tially distributed around a given mean value; and the destinations are randomly chosen
with equal probability between the processes.

3.3 Maetrics

The performance of an interconnection network under dynamic load is usually assessed
by two quantitative parameters, theaccepted bandwidth or throughput and thelatency.
Accepted bandwidth is defined as the sustained data delivery rate given some offered
bandwidth at the network input. Two important characteristics are the saturation point
and the sustained rate after saturation. Saturation is defined as the minimum offered
bandwidth where the accepted bandwidth is lower than the global packet creation rate
at the source nodes. It is worth noting that, before saturation, offered and accepted
bandwidth are the same. The behavior above saturation is important because the network
and/or the allocation algorithms can become unstable, leading to a sharp performance
degradation. We usually expect the accepted bandwidth to remain stable after saturation,
for example in the presence of bursty applications that require peak performance for a
short period of time.

The experimental results of each traffic are presented using two graphs, one to dis-
play the accepted bandwidth and the other to display the network latency. In both graphs
the x-axis corresponds to the offered bandwidth normalized with the unidirectional band-
width of the links connecting the processing nodes to the network switches. This makes
the analysis independent from the link bandwidth and the flit size.

We report the latency in cycles rather than absolute time, in order to make our analy-
sis insensitive to technological changes. Given that the 1/0 bus in the network interface
can only allow unidirectional traffic, the maximum achievable throughput under uniform
traffic is only 50% of the nominal injection bandwidth. The intuition behind this limita-
tion is the following: for example, let’s consider a cluster with only two nodes and single
network rail. Under uniform traffic only one SMP can send to another at any given time,
due to the unidirectionality constraint in the endpoints.

3.4 Experimental results

Figure 6 depicts the bandwidth and latency results for the different algorithms. Only
the optimal static allocation is compared because the resources required for simulating
enough rails for the 2logn allocation were prohibitive. We expect the optimal allocation
to perform better than the 2logn allocation, so these results serve to demonstrate the
weaknesses of the static allocation.

One trend arising from these data is that the dynamic algorithm outperforms all
the other schemes in terms of bandwidth after the saturation point. It is interesting to
note that the basic algorithm outperforms the static approach. This can be explained
by the fact that the probability of finding a free rail is higher in the basic approach

3A study of the effect of the message size and the motivation for choosing 32KB can be found in [1]

Accepted load

Algorithm comparison: bandwidth

0.35 , , , : : : | |
0.3 o I
0.25 |
0.2
015 ~ A e R - "‘ﬁ"""""‘"""‘=’>';’»‘i'-';'-':'.';l;‘flﬁ’_'f;’f;'!:‘,‘;‘.‘;’:;’:;’:;'::‘::'.';':;'.';.
01r basic —— -
dynamic w/o striping ---x---
dynamic with striping ------
static w/o striping 8-
static with striping .
0.05 . ' I L ! !
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 (

Offered load

Figure 5: Bandwidth comparison

Latency (cycles)

Algorithm comparison: latency

basic ——
dynamic w/o striping ---x---
100000 dynamic with striping ---*---
static w/o striping 8-
static with striping ---m--
80000
60000
40000 //
-,_~—><”,5/‘f/
OIS SO
20000 g e
* -
0 | | | |
0.05 0.1 0.15 0.2 0.25

Offered load

Figure 6: Latency comparison

10

than in the static approach, where the number of outgoing channels is severely limited.
This restriction also penalizes the message latency. The basic algorithm has a higher
probability of using a free rail because it has seven rails to pick from, albeit bidirectional,
while the static algorithm has fewer rails to choose from, even if unidirectional. This
suggests that the static approach may not be worthwhile to implement, even if enough
rails are available for it. Its only merit is a simple implementation and lack of protocol
overhead, but this can be obtained with the basic approach as well, with higher or better
performance.

4 Conclusions

One of the novel methods that can be used to increase communication performance is
using redundant networks (rails). In this report we explored various aspects of statically
allocating multiple rails for unidirectional communication. We have shown that not only
is static allocation very demanding in resources, it also performs quite poorly. In fact,
we found it performs even worse than the basic algorithm, which uses only one rail in
a round-robin fashion, both in terms of bandwidth and latency. This remains true even
if we stripe messages over several rails, an approach which can lead to significant band-
width improvment in dynamic allocation methods. We conclude that while static alloca-
tion may be simple to implement, it has no real advantage, and only dynamic allocation
methods should be used on a multirail network for good unidirectional performance.

Acknowledgments
We thank José Duato for spearheading the project and for pointing out the limitations
of the static approach.

References

[1] Salvador Coll, Eitan Frachtenberg, Fabrizio Petrini, Adolfy Hoisie, and Leonid Gurvits. Using Multirail
Networks in High Performance Clusters. In Third |EEE International Conference on Cluster Computing
(Cluster’01), Newport Beach, CA, USA, October 2001.

[2] William J. Dally. Virtual Channel Flow Control. |EEE Transactions on Parallel and Distributed Systems,
3(2):194-205, March 1992.

[3] Charles E. Leiserson. Fat-Trees: Universal Networks for Hardware Efficient Supercomputing. |IEEE
Transactions on Computers, C-34(10):892-901, October 1985.

[4] D. Lubell. A short proof of Sperner’s theorem. Journal of Combinatory Theory, 1(299), 1966.

[5] Fabrizio Petrini, Adolfy Hoisie, Wu chun Feng, and Richard Graham. Performance Evaluation of the
Quadrics Interconnection Network. In Workshop on Communication Architecture for Clusters (CAC '01),
San Francisco, CA, April 2001.

[6] Fabrizio Petrini and Marco Vanneschi. SMART: a Simulator of Massive ARchitectures and Topologies.
In International Conference on Parallel and Distributed Systems Euro-PDS 97, Barcelona, Spain, June
1997.

[7] Quadrics Supercomputers World Ltd. Elan Reference Manual, January 1999.
[8] Quadrics Supercomputers World Ltd. Elite Reference Manual, November 1999.

11

